theorem sbq {x: nat} (a: nat) (b: wff x): $ x = a -> (b <-> [a / x] b) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ax_12 | 
          x = y -> b -> A. x (x = y -> b)  | 
        
        
          | 2 | 
           | 
          anll | 
          x = a /\ b /\ y = a -> x = a  | 
        
        
          | 3 | 
           | 
          anr | 
          x = a /\ b /\ y = a -> y = a  | 
        
        
          | 4 | 
          2, 3 | 
          eqtr4d | 
          x = a /\ b /\ y = a -> x = y  | 
        
        
          | 5 | 
           | 
          anlr | 
          x = a /\ b /\ y = a -> b  | 
        
        
          | 6 | 
          1, 4, 5 | 
          sylc | 
          x = a /\ b /\ y = a -> A. x (x = y -> b)  | 
        
        
          | 7 | 
          6 | 
          ialda | 
          x = a /\ b -> A. y (y = a -> A. x (x = y -> b))  | 
        
        
          | 8 | 
          7 | 
          exp | 
          x = a -> b -> A. y (y = a -> A. x (x = y -> b))  | 
        
        
          | 9 | 
           | 
          ax_6 | 
          E. y y = a  | 
        
        
          | 10 | 
           | 
          nfv | 
          F/ y x = a  | 
        
        
          | 11 | 
           | 
          nfal1 | 
          F/ y A. y (y = a -> A. x (x = y -> b))  | 
        
        
          | 12 | 
           | 
          nfv | 
          F/ y b  | 
        
        
          | 13 | 
          11, 12 | 
          nfim | 
          F/ y A. y (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 14 | 
           | 
          eal | 
          A. y (y = a -> A. x (x = y -> b)) -> y = a -> A. x (x = y -> b)  | 
        
        
          | 15 | 
           | 
          anr | 
          x = a /\ y = a -> y = a  | 
        
        
          | 16 | 
          15 | 
          imim1i | 
          (y = a -> A. x (x = y -> b)) -> x = a /\ y = a -> A. x (x = y -> b)  | 
        
        
          | 17 | 
          16 | 
          com12 | 
          x = a /\ y = a -> (y = a -> A. x (x = y -> b)) -> A. x (x = y -> b)  | 
        
        
          | 18 | 
           | 
          eal | 
          A. x (x = y -> b) -> x = y -> b  | 
        
        
          | 19 | 
          18 | 
          com12 | 
          x = y -> A. x (x = y -> b) -> b  | 
        
        
          | 20 | 
           | 
          eqtr4 | 
          x = a -> y = a -> x = y  | 
        
        
          | 21 | 
          20 | 
          imp | 
          x = a /\ y = a -> x = y  | 
        
        
          | 22 | 
          19, 21 | 
          syl | 
          x = a /\ y = a -> A. x (x = y -> b) -> b  | 
        
        
          | 23 | 
          17, 22 | 
          syld | 
          x = a /\ y = a -> (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 24 | 
          14, 23 | 
          syl5 | 
          x = a /\ y = a -> A. y (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 25 | 
          24 | 
          exp | 
          x = a -> y = a -> A. y (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 26 | 
          10, 13, 25 | 
          eexdh | 
          x = a -> E. y y = a -> A. y (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 27 | 
          9, 26 | 
          mpi | 
          x = a -> A. y (y = a -> A. x (x = y -> b)) -> b  | 
        
        
          | 28 | 
          8, 27 | 
          ibid | 
          x = a -> (b <-> A. y (y = a -> A. x (x = y -> b)))  | 
        
        
          | 29 | 
          28 | 
          conv sb | 
          x = a -> (b <-> [a / x] b)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_12)