Theorem eqtr4 | index | src |

theorem eqtr4 (a b c: nat): $ a = b -> c = b -> a = c $;
StepHypRefExpression
1 eqcom
c = b -> b = c
2 eqtr
a = b -> b = c -> a = c
3 1, 2 syl5
a = b -> c = b -> a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)