theorem sbeq1 {x: nat} (a b: nat x) (c: wff x):
$ a = b -> ([a / x] c <-> [b / x] c) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | a = b -> (y = a <-> y = b) |
|
| 2 | 1 | imeq1d | a = b -> (y = a -> A. x (x = y -> c) <-> y = b -> A. x (x = y -> c)) |
| 3 | 2 | aleqd | a = b -> (A. y (y = a -> A. x (x = y -> c)) <-> A. y (y = b -> A. x (x = y -> c))) |
| 4 | 3 | conv sb | a = b -> ([a / x] c <-> [b / x] c) |