theorem indd (G: wff) {x y: nat} (a: nat y) (px: wff x) (p0 pa py ps: wff y):
$ x = a -> (px <-> pa) $ >
$ x = 0 -> (px <-> p0) $ >
$ x = y -> (px <-> py) $ >
$ x = suc y -> (px <-> ps) $ >
$ G -> p0 $ >
$ G /\ py -> ps $ >
$ G -> pa $;
Step | Hyp | Ref | Expression |
1 |
|
hyp ha |
x = a -> (px <-> pa) |
2 |
1 |
imeq2d |
x = a -> (G -> px <-> G -> pa) |
3 |
|
hyp h0 |
x = 0 -> (px <-> p0) |
4 |
3 |
imeq2d |
x = 0 -> (G -> px <-> G -> p0) |
5 |
|
hyp hy |
x = y -> (px <-> py) |
6 |
5 |
imeq2d |
x = y -> (G -> px <-> G -> py) |
7 |
|
hyp hs |
x = suc y -> (px <-> ps) |
8 |
7 |
imeq2d |
x = suc y -> (G -> px <-> G -> ps) |
9 |
|
hyp h1 |
G -> p0 |
10 |
|
hyp h2 |
G /\ py -> ps |
11 |
10 |
exp |
G -> py -> ps |
12 |
11 |
a2i |
(G -> py) -> G -> ps |
13 |
2, 4, 6, 8, 9, 12 |
ind |
G -> pa |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5)