theorem addS1 (a b: nat): $ suc a + b = suc (a + b) $;
Step | Hyp | Ref | Expression |
1 |
|
addeq2 |
x = b -> suc a + x = suc a + b |
2 |
|
addeq2 |
x = b -> a + x = a + b |
3 |
2 |
suceqd |
x = b -> suc (a + x) = suc (a + b) |
4 |
1, 3 |
eqeqd |
x = b -> (suc a + x = suc (a + x) <-> suc a + b = suc (a + b)) |
5 |
|
addeq2 |
x = 0 -> suc a + x = suc a + 0 |
6 |
|
addeq2 |
x = 0 -> a + x = a + 0 |
7 |
6 |
suceqd |
x = 0 -> suc (a + x) = suc (a + 0) |
8 |
5, 7 |
eqeqd |
x = 0 -> (suc a + x = suc (a + x) <-> suc a + 0 = suc (a + 0)) |
9 |
|
addeq2 |
x = y -> suc a + x = suc a + y |
10 |
|
addeq2 |
x = y -> a + x = a + y |
11 |
10 |
suceqd |
x = y -> suc (a + x) = suc (a + y) |
12 |
9, 11 |
eqeqd |
x = y -> (suc a + x = suc (a + x) <-> suc a + y = suc (a + y)) |
13 |
|
addeq2 |
x = suc y -> suc a + x = suc a + suc y |
14 |
|
addeq2 |
x = suc y -> a + x = a + suc y |
15 |
14 |
suceqd |
x = suc y -> suc (a + x) = suc (a + suc y) |
16 |
13, 15 |
eqeqd |
x = suc y -> (suc a + x = suc (a + x) <-> suc a + suc y = suc (a + suc y)) |
17 |
|
eqtr4 |
suc a + 0 = suc a -> suc (a + 0) = suc a -> suc a + 0 = suc (a + 0) |
18 |
|
add0 |
suc a + 0 = suc a |
19 |
17, 18 |
ax_mp |
suc (a + 0) = suc a -> suc a + 0 = suc (a + 0) |
20 |
|
suceq |
a + 0 = a -> suc (a + 0) = suc a |
21 |
|
add0 |
a + 0 = a |
22 |
20, 21 |
ax_mp |
suc (a + 0) = suc a |
23 |
19, 22 |
ax_mp |
suc a + 0 = suc (a + 0) |
24 |
|
addS |
suc a + suc y = suc (suc a + y) |
25 |
|
addS |
a + suc y = suc (a + y) |
26 |
|
id |
suc a + y = suc (a + y) -> suc a + y = suc (a + y) |
27 |
25, 26 |
syl6eqr |
suc a + y = suc (a + y) -> suc a + y = a + suc y |
28 |
27 |
suceqd |
suc a + y = suc (a + y) -> suc (suc a + y) = suc (a + suc y) |
29 |
24, 28 |
syl5eq |
suc a + y = suc (a + y) -> suc a + suc y = suc (a + suc y) |
30 |
4, 8, 12, 16, 23, 29 |
ind |
suc a + b = suc (a + b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)