Theorem add01 | index | src |

theorem add01 (a: nat): $ 0 + a = a $;
StepHypRefExpression
1 addeq2
x = a -> 0 + x = 0 + a
2 id
x = a -> x = a
3 1, 2 eqeqd
x = a -> (0 + x = x <-> 0 + a = a)
4 addeq2
x = 0 -> 0 + x = 0 + 0
5 id
x = 0 -> x = 0
6 4, 5 eqeqd
x = 0 -> (0 + x = x <-> 0 + 0 = 0)
7 addeq2
x = y -> 0 + x = 0 + y
8 id
x = y -> x = y
9 7, 8 eqeqd
x = y -> (0 + x = x <-> 0 + y = y)
10 addeq2
x = suc y -> 0 + x = 0 + suc y
11 id
x = suc y -> x = suc y
12 10, 11 eqeqd
x = suc y -> (0 + x = x <-> 0 + suc y = suc y)
13 add0
0 + 0 = 0
14 addS
0 + suc y = suc (0 + y)
15 suceq
0 + y = y -> suc (0 + y) = suc y
16 14, 15 syl5eq
0 + y = y -> 0 + suc y = suc y
17 3, 6, 9, 12, 13, 16 ind
0 + a = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)