theorem addeqd (G: wff) (a b c d: nat): $ G -> a = b $ > $ G -> c = d $ > $ G -> a + c = b + d $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addeq | a = b -> c = d -> a + c = b + d |
|
2 | hyp h1 | G -> a = b |
|
3 | hyp h2 | G -> c = d |
|
4 | 1, 2, 3 | sylc | G -> a + c = b + d |