theorem muleqd (G: wff) (a b c d: nat): $ G -> a = b $ > $ G -> c = d $ > $ G -> a * c = b * d $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muleq | a = b -> c = d -> a * c = b * d |
|
| 2 | hyp h1 | G -> a = b |
|
| 3 | hyp h2 | G -> c = d |
|
| 4 | 1, 2, 3 | sylc | G -> a * c = b * d |