theorem leeq (_a1 _a2 _b1 _b2: nat): $ _a1 = _a2 -> _b1 = _b2 -> (_a1 <= _b1 <-> _a2 <= _b2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anl | _a1 = _a2 /\ _b1 = _b2 -> _a1 = _a2 |
|
2 | anr | _a1 = _a2 /\ _b1 = _b2 -> _b1 = _b2 |
|
3 | 1, 2 | leeqd | _a1 = _a2 /\ _b1 = _b2 -> (_a1 <= _b1 <-> _a2 <= _b2) |
4 | 3 | exp | _a1 = _a2 -> _b1 = _b2 -> (_a1 <= _b1 <-> _a2 <= _b2) |