theorem dvdasymd (G: wff) (a b: nat):
$ G -> a || b $ >
$ G -> b || a $ >
$ G -> a = b $;
Step | Hyp | Ref | Expression |
1 |
|
anr |
G /\ a = 0 -> a = 0 |
2 |
|
dvd01 |
0 || b <-> b = 0 |
3 |
|
dvdeq1 |
a = 0 -> (a || b <-> 0 || b) |
4 |
3 |
anwr |
G /\ a = 0 -> (a || b <-> 0 || b) |
5 |
|
hyp h1 |
G -> a || b |
6 |
5 |
anwl |
G /\ a = 0 -> a || b |
7 |
4, 6 |
mpbid |
G /\ a = 0 -> 0 || b |
8 |
2, 7 |
sylib |
G /\ a = 0 -> b = 0 |
9 |
1, 8 |
eqtr4d |
G /\ a = 0 -> a = b |
10 |
|
dvd01 |
0 || a <-> a = 0 |
11 |
|
dvdeq1 |
b = 0 -> (b || a <-> 0 || a) |
12 |
11 |
anwr |
G /\ ~a = 0 /\ b = 0 -> (b || a <-> 0 || a) |
13 |
|
hyp h2 |
G -> b || a |
14 |
13 |
anwll |
G /\ ~a = 0 /\ b = 0 -> b || a |
15 |
12, 14 |
mpbid |
G /\ ~a = 0 /\ b = 0 -> 0 || a |
16 |
10, 15 |
sylib |
G /\ ~a = 0 /\ b = 0 -> a = 0 |
17 |
|
anr |
G /\ ~a = 0 /\ b = 0 -> b = 0 |
18 |
16, 17 |
eqtr4d |
G /\ ~a = 0 /\ b = 0 -> a = b |
19 |
|
anr |
G /\ ~a = 0 /\ ~b = 0 -> ~b = 0 |
20 |
19 |
conv ne |
G /\ ~a = 0 /\ ~b = 0 -> b != 0 |
21 |
5 |
anwll |
G /\ ~a = 0 /\ ~b = 0 -> a || b |
22 |
20, 21 |
dvdle |
G /\ ~a = 0 /\ ~b = 0 -> a <= b |
23 |
|
anlr |
G /\ ~a = 0 /\ ~b = 0 -> ~a = 0 |
24 |
23 |
conv ne |
G /\ ~a = 0 /\ ~b = 0 -> a != 0 |
25 |
13 |
anwll |
G /\ ~a = 0 /\ ~b = 0 -> b || a |
26 |
24, 25 |
dvdle |
G /\ ~a = 0 /\ ~b = 0 -> b <= a |
27 |
22, 26 |
leasymd |
G /\ ~a = 0 /\ ~b = 0 -> a = b |
28 |
18, 27 |
casesda |
G /\ ~a = 0 -> a = b |
29 |
9, 28 |
casesda |
G -> a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)