theorem dvd01 (a: nat): $ 0 || a <-> a = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bi1 |
(x * 0 = a <-> 0 = a) -> x * 0 = a -> 0 = a |
2 |
|
eqeq1 |
x * 0 = 0 -> (x * 0 = a <-> 0 = a) |
3 |
|
mul02 |
x * 0 = 0 |
4 |
2, 3 |
ax_mp |
x * 0 = a <-> 0 = a |
5 |
1, 4 |
ax_mp |
x * 0 = a -> 0 = a |
6 |
5 |
eqcomd |
x * 0 = a -> a = 0 |
7 |
6 |
eex |
E. x x * 0 = a -> a = 0 |
8 |
7 |
conv dvd |
0 || a -> a = 0 |
9 |
|
dvd02 |
0 || 0 |
10 |
|
dvdeq2 |
a = 0 -> (0 || a <-> 0 || 0) |
11 |
9, 10 |
mpbiri |
a = 0 -> 0 || a |
12 |
8, 11 |
ibii |
0 || a <-> a = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
muleq,
add0,
mul0,
mulS)