Theorem eqeq1 | index | src |

theorem eqeq1 (a b c: nat): $ a = b -> (a = c <-> b = c) $;
StepHypRefExpression
1 eqtr3
a = b -> a = c -> b = c
2 eqtr
a = b -> b = c -> a = c
3 1, 2 ibid
a = b -> (a = c <-> b = c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)