Theorem
dvd02
≪
|
index
|
src
|
≫
theorem dvd02 (a: nat): $ a || 0 $;
Step
Hyp
Ref
Expression
1
idvd
0 * a = 0 -> a || 0
2
mul01
0 * a = 0
3
1
,
2
ax_mp
a || 0
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
,
itru
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
,
ax_10
,
ax_11
,
ax_12
)
,
axs_peano
(
peano2
,
peano5
,
muleq
,
add0
,
mul0
,
mulS
)