theorem modeq0 (a n: nat): $ a % n = 0 <-> n || a $;
Step | Hyp | Ref | Expression |
1 |
|
muleq1 |
x = a // n -> x * n = a // n * n |
2 |
1 |
anwr |
a % n = 0 /\ x = a // n -> x * n = a // n * n |
3 |
|
mulcom |
a // n * n = n * (a // n) |
4 |
|
add0 |
n * (a // n) + 0 = n * (a // n) |
5 |
|
addeq2 |
a % n = 0 -> n * (a // n) + a % n = n * (a // n) + 0 |
6 |
5 |
anwl |
a % n = 0 /\ x = a // n -> n * (a // n) + a % n = n * (a // n) + 0 |
7 |
|
divmod |
n * (a // n) + a % n = a |
8 |
7 |
a1i |
a % n = 0 /\ x = a // n -> n * (a // n) + a % n = a |
9 |
6, 8 |
eqtr3d |
a % n = 0 /\ x = a // n -> n * (a // n) + 0 = a |
10 |
4, 9 |
syl5eqr |
a % n = 0 /\ x = a // n -> n * (a // n) = a |
11 |
3, 10 |
syl5eq |
a % n = 0 /\ x = a // n -> a // n * n = a |
12 |
2, 11 |
eqtrd |
a % n = 0 /\ x = a // n -> x * n = a |
13 |
12 |
iexde |
a % n = 0 -> E. x x * n = a |
14 |
|
mulmod2 |
x * n % n = 0 |
15 |
|
eqcom |
x * n = a -> a = x * n |
16 |
|
eqidd |
x * n = a -> n = n |
17 |
15, 16 |
modeqd |
x * n = a -> a % n = x * n % n |
18 |
14, 17 |
syl6eq |
x * n = a -> a % n = 0 |
19 |
18 |
eex |
E. x x * n = a -> a % n = 0 |
20 |
13, 19 |
ibii |
a % n = 0 <-> E. x x * n = a |
21 |
20 |
conv dvd |
a % n = 0 <-> n || a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)