Theorem mulmod2 | index | src |

theorem mulmod2 (a b: nat): $ a * b % b = 0 $;
StepHypRefExpression
1 eqtr
a * b % b = b * a % b -> b * a % b = 0 -> a * b % b = 0
2 id
a * b = b * a -> a * b = b * a
3 eqidd
a * b = b * a -> b = b
4 2, 3 modeqd
a * b = b * a -> a * b % b = b * a % b
5 mulcom
a * b = b * a
6 4, 5 ax_mp
a * b % b = b * a % b
7 1, 6 ax_mp
b * a % b = 0 -> a * b % b = 0
8 mulmod1
b * a % b = 0
9 7, 8 ax_mp
a * b % b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)