theorem mulmod1 (a b: nat): $ b * a % b = 0 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          modeq2 | 
          b = 0 -> b * a % b = b * a % 0  | 
        
        
          | 2 | 
           | 
          mod0 | 
          b * a % 0 = b * a  | 
        
        
          | 3 | 
           | 
          mul01 | 
          0 * a = 0  | 
        
        
          | 4 | 
           | 
          muleq1 | 
          b = 0 -> b * a = 0 * a  | 
        
        
          | 5 | 
          3, 4 | 
          syl6eq | 
          b = 0 -> b * a = 0  | 
        
        
          | 6 | 
          2, 5 | 
          syl5eq | 
          b = 0 -> b * a % 0 = 0  | 
        
        
          | 7 | 
          1, 6 | 
          eqtrd | 
          b = 0 -> b * a % b = 0  | 
        
        
          | 8 | 
           | 
          bi2 | 
          (0 < b <-> ~b = 0) -> ~b = 0 -> 0 < b  | 
        
        
          | 9 | 
           | 
          lt01 | 
          0 < b <-> b != 0  | 
        
        
          | 10 | 
          9 | 
          conv ne | 
          0 < b <-> ~b = 0  | 
        
        
          | 11 | 
          8, 10 | 
          ax_mp | 
          ~b = 0 -> 0 < b  | 
        
        
          | 12 | 
           | 
          add0 | 
          b * a + 0 = b * a  | 
        
        
          | 13 | 
          12 | 
          a1i | 
          ~b = 0 -> b * a + 0 = b * a  | 
        
        
          | 14 | 
          11, 13 | 
          eqdivmod | 
          ~b = 0 -> b * a // b = a /\ b * a % b = 0  | 
        
        
          | 15 | 
          14 | 
          anrd | 
          ~b = 0 -> b * a % b = 0  | 
        
        
          | 16 | 
          7, 15 | 
          cases | 
          b * a % b = 0  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)