Theorem mulmod1 | index | src |

theorem mulmod1 (a b: nat): $ b * a % b = 0 $;
StepHypRefExpression
1 modeq2
b = 0 -> b * a % b = b * a % 0
2 mod0
b * a % 0 = b * a
3 mul01
0 * a = 0
4 muleq1
b = 0 -> b * a = 0 * a
5 3, 4 syl6eq
b = 0 -> b * a = 0
6 2, 5 syl5eq
b = 0 -> b * a % 0 = 0
7 1, 6 eqtrd
b = 0 -> b * a % b = 0
8 bi2
(0 < b <-> ~b = 0) -> ~b = 0 -> 0 < b
9 lt01
0 < b <-> b != 0
10 9 conv ne
0 < b <-> ~b = 0
11 8, 10 ax_mp
~b = 0 -> 0 < b
12 add0
b * a + 0 = b * a
13 12 a1i
~b = 0 -> b * a + 0 = b * a
14 11, 13 eqdivmod
~b = 0 -> b * a // b = a /\ b * a % b = 0
15 14 anrd
~b = 0 -> b * a % b = 0
16 7, 15 cases
b * a % b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)