theorem muldiv1 (a b: nat): $ b != 0 -> a * b // b = a $;
Step | Hyp | Ref | Expression |
1 |
|
mulcom |
a * b = b * a |
2 |
1 |
a1i |
b != 0 -> a * b = b * a |
3 |
|
eqidd |
b != 0 -> b = b |
4 |
2, 3 |
diveqd |
b != 0 -> a * b // b = b * a // b |
5 |
|
muldiv2 |
b != 0 -> b * a // b = a |
6 |
4, 5 |
eqtrd |
b != 0 -> a * b // b = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)