theorem diveqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> _a1 // _b1 = _a2 // _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> r = r |
2 |
|
hyp _bh |
_G -> _b1 = _b2 |
3 |
1, 2 |
lteqd |
_G -> (r < _b1 <-> r < _b2) |
4 |
|
eqidd |
_G -> q = q |
5 |
2, 4 |
muleqd |
_G -> _b1 * q = _b2 * q |
6 |
5, 1 |
addeqd |
_G -> _b1 * q + r = _b2 * q + r |
7 |
|
hyp _ah |
_G -> _a1 = _a2 |
8 |
6, 7 |
eqeqd |
_G -> (_b1 * q + r = _a1 <-> _b2 * q + r = _a2) |
9 |
3, 8 |
aneqd |
_G -> (r < _b1 /\ _b1 * q + r = _a1 <-> r < _b2 /\ _b2 * q + r = _a2) |
10 |
9 |
exeqd |
_G -> (E. r (r < _b1 /\ _b1 * q + r = _a1) <-> E. r (r < _b2 /\ _b2 * q + r = _a2)) |
11 |
10 |
abeqd |
_G -> {q | E. r (r < _b1 /\ _b1 * q + r = _a1)} == {q | E. r (r < _b2 /\ _b2 * q + r = _a2)} |
12 |
11 |
theeqd |
_G -> the {q | E. r (r < _b1 /\ _b1 * q + r = _a1)} = the {q | E. r (r < _b2 /\ _b2 * q + r = _a2)} |
13 |
12 |
conv div |
_G -> _a1 // _b1 = _a2 // _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)