Theorem diveqd | index | src |

theorem diveqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 // _b1 = _a2 // _b2 $;
StepHypRefExpression
1 eqidd
_G -> r = r
2 hyp _bh
_G -> _b1 = _b2
3 1, 2 lteqd
_G -> (r < _b1 <-> r < _b2)
4 eqidd
_G -> q = q
5 2, 4 muleqd
_G -> _b1 * q = _b2 * q
6 5, 1 addeqd
_G -> _b1 * q + r = _b2 * q + r
7 hyp _ah
_G -> _a1 = _a2
8 6, 7 eqeqd
_G -> (_b1 * q + r = _a1 <-> _b2 * q + r = _a2)
9 3, 8 aneqd
_G -> (r < _b1 /\ _b1 * q + r = _a1 <-> r < _b2 /\ _b2 * q + r = _a2)
10 9 exeqd
_G -> (E. r (r < _b1 /\ _b1 * q + r = _a1) <-> E. r (r < _b2 /\ _b2 * q + r = _a2))
11 10 abeqd
_G -> {q | E. r (r < _b1 /\ _b1 * q + r = _a1)} == {q | E. r (r < _b2 /\ _b2 * q + r = _a2)}
12 11 theeqd
_G -> the {q | E. r (r < _b1 /\ _b1 * q + r = _a1)} = the {q | E. r (r < _b2 /\ _b2 * q + r = _a2)}
13 12 conv div
_G -> _a1 // _b1 = _a2 // _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)