theorem unfin (A B: set): $ finite A -> finite B -> finite (A u. B) $;
Step | Hyp | Ref | Expression |
1 |
|
lteq2 |
z = max m n -> (x < z <-> x < max m n) |
2 |
1 |
imeq2d |
z = max m n -> (x e. A u. B -> x < z <-> x e. A u. B -> x < max m n) |
3 |
2 |
aleqd |
z = max m n -> (A. x (x e. A u. B -> x < z) <-> A. x (x e. A u. B -> x < max m n)) |
4 |
3 |
iexe |
A. x (x e. A u. B -> x < max m n) -> E. z A. x (x e. A u. B -> x < z) |
5 |
4 |
conv finite |
A. x (x e. A u. B -> x < max m n) -> finite (A u. B) |
6 |
|
lemax1 |
m <= max m n |
7 |
|
ltletr |
x < m -> m <= max m n -> x < max m n |
8 |
6, 7 |
mpi |
x < m -> x < max m n |
9 |
8 |
imim2i |
(x e. A -> x < m) -> x e. A -> x < max m n |
10 |
|
lemax2 |
n <= max m n |
11 |
|
ltletr |
x < n -> n <= max m n -> x < max m n |
12 |
10, 11 |
mpi |
x < n -> x < max m n |
13 |
12 |
imim2i |
(x e. B -> x < n) -> x e. B -> x < max m n |
14 |
|
elun |
x e. A u. B <-> x e. A \/ x e. B |
15 |
14 |
imeq1i |
x e. A u. B -> x < max m n <-> x e. A \/ x e. B -> x < max m n |
16 |
|
eor |
(x e. A -> x < max m n) -> (x e. B -> x < max m n) -> x e. A \/ x e. B -> x < max m n |
17 |
15, 16 |
syl6ibr |
(x e. A -> x < max m n) -> (x e. B -> x < max m n) -> x e. A u. B -> x < max m n |
18 |
13, 17 |
syl5 |
(x e. A -> x < max m n) -> (x e. B -> x < n) -> x e. A u. B -> x < max m n |
19 |
9, 18 |
rsyl |
(x e. A -> x < m) -> (x e. B -> x < n) -> x e. A u. B -> x < max m n |
20 |
19 |
al2imi |
A. x (x e. A -> x < m) -> A. x (x e. B -> x < n) -> A. x (x e. A u. B -> x < max m n) |
21 |
5, 20 |
syl6 |
A. x (x e. A -> x < m) -> A. x (x e. B -> x < n) -> finite (A u. B) |
22 |
21 |
eexd |
A. x (x e. A -> x < m) -> E. n A. x (x e. B -> x < n) -> finite (A u. B) |
23 |
22 |
conv finite |
A. x (x e. A -> x < m) -> finite B -> finite (A u. B) |
24 |
23 |
eex |
E. m A. x (x e. A -> x < m) -> finite B -> finite (A u. B) |
25 |
24 |
conv finite |
finite A -> finite B -> finite (A u. B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)