Theorem lemax1 | index | src |

theorem lemax1 (a b: nat): $ a <= max a b $;
StepHypRefExpression
1 ifpos
a < b -> if (a < b) b a = b
2 1 conv max
a < b -> max a b = b
3 2 leeq2d
a < b -> (a <= max a b <-> a <= b)
4 ltle
a < b -> a <= b
5 3, 4 mpbird
a < b -> a <= max a b
6 eqler
max a b = a -> a <= max a b
7 ifneg
~a < b -> if (a < b) b a = a
8 7 conv max
~a < b -> max a b = a
9 6, 8 syl
~a < b -> a <= max a b
10 5, 9 cases
a <= max a b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano2, peano5, addeq, add0, addS)