Theorem ifneg | index | src |

pub theorem ifneg (p: wff) (a b: nat): $ ~p -> if p a b = b $;
StepHypRefExpression
1 ifpneg
~p -> (ifp p (n = a) (n = b) <-> n = b)
2 1 eqtheabd
~p -> the {n | ifp p (n = a) (n = b)} = b
3 2 conv if
~p -> if p a b = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)