Theorem
ifid
≪
|
index
|
src
|
≫
theorem ifid (a: nat) (p: wff): $ if p a a = a $;
Step
Hyp
Ref
Expression
1
ifpos
p -> if p a a = a
2
ifneg
~p -> if p a a = a
3
1
,
2
cases
if p a a = a
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
,
itru
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
,
ax_10
,
ax_11
,
ax_12
)
,
axs_set
(
elab
,
ax_8
)
,
axs_the
(
theid
)