theorem ifeq2a (a b c: nat) (p: wff): $ (p -> a = b) -> if p a c = if p b c $;
Step | Hyp | Ref | Expression |
1 |
|
ifeq2 |
a = b -> if p a c = if p b c |
2 |
1 |
imim2i |
(p -> a = b) -> p -> if p a c = if p b c |
3 |
|
ifneg |
~p -> if p a c = c |
4 |
|
ifneg |
~p -> if p b c = c |
5 |
3, 4 |
eqtr4d |
~p -> if p a c = if p b c |
6 |
5 |
a1i |
(p -> a = b) -> ~p -> if p a c = if p b c |
7 |
2, 6 |
casesd |
(p -> a = b) -> if p a c = if p b c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)