theorem ifeq2a (a b c: nat) (p: wff): $ (p -> a = b) -> if p a c = if p b c $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ifeq2 | a = b -> if p a c = if p b c | 
        
          | 2 | 1 | imim2i | (p -> a = b) -> p -> if p a c = if p b c | 
        
          | 3 |  | ifneg | ~p -> if p a c = c | 
        
          | 4 |  | ifneg | ~p -> if p b c = c | 
        
          | 5 | 3, 4 | eqtr4d | ~p -> if p a c = if p b c | 
        
          | 6 | 5 | a1i | (p -> a = b) -> ~p -> if p a c = if p b c | 
        
          | 7 | 2, 6 | casesd | (p -> a = b) -> if p a c = if p b c | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0)