Theorem ifeq3a | index | src |

theorem ifeq3a (a b c: nat) (p: wff): $ (~p -> b = c) -> if p a b = if p a c $;
StepHypRefExpression
1 ifpos
p -> if p a b = a
2 ifpos
p -> if p a c = a
3 1, 2 eqtr4d
p -> if p a b = if p a c
4 3 a1i
(~p -> b = c) -> p -> if p a b = if p a c
5 ifeq3
b = c -> if p a b = if p a c
6 5 imim2i
(~p -> b = c) -> ~p -> if p a b = if p a c
7 4, 6 casesd
(~p -> b = c) -> if p a b = if p a c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)