theorem ifbothd (G: wff) (a b: nat) (p q qa qb: wff):
$ if p a b = a -> (q <-> qa) $ >
$ if p a b = b -> (q <-> qb) $ >
$ G /\ p -> qa $ >
$ G /\ ~p -> qb $ >
$ G -> q $;
Step | Hyp | Ref | Expression |
1 |
|
hyp ea |
if p a b = a -> (q <-> qa) |
2 |
|
ifpos |
p -> if p a b = a |
3 |
2 |
anwr |
G /\ p -> if p a b = a |
4 |
1, 3 |
syl |
G /\ p -> (q <-> qa) |
5 |
|
hyp h1 |
G /\ p -> qa |
6 |
4, 5 |
mpbird |
G /\ p -> q |
7 |
|
hyp eb |
if p a b = b -> (q <-> qb) |
8 |
|
ifneg |
~p -> if p a b = b |
9 |
8 |
anwr |
G /\ ~p -> if p a b = b |
10 |
7, 9 |
syl |
G /\ ~p -> (q <-> qb) |
11 |
|
hyp h2 |
G /\ ~p -> qb |
12 |
10, 11 |
mpbird |
G /\ ~p -> q |
13 |
6, 12 |
casesda |
G -> q |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid)