Theorem ifT | index | src |

theorem ifT (A: set) (a b: nat) (p: wff): $ a e. A /\ b e. A -> if p a b e. A $;
StepHypRefExpression
1 eleq1
if p a b = a -> (if p a b e. A <-> a e. A)
2 eleq1
if p a b = b -> (if p a b e. A <-> b e. A)
3 anll
a e. A /\ b e. A /\ p -> a e. A
4 anlr
a e. A /\ b e. A /\ ~p -> b e. A
5 1, 2, 3, 4 ifbothd
a e. A /\ b e. A -> if p a b e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)