Theorem eleq1 | index | src |

theorem eleq1 (A: set) (a b: nat): $ a = b -> (a e. A <-> b e. A) $;
StepHypRefExpression
1 ax_8
a = b -> a e. A -> b e. A
2 ax_8
b = a -> b e. A -> a e. A
3 eqcom
a = b -> b = a
4 2, 3 syl
a = b -> b e. A -> a e. A
5 1, 4 ibid
a = b -> (a e. A <-> b e. A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_set (ax_8)