Theorem eqstr4g | index | src |

theorem eqstr4g (A B C D: set) (G: wff):
  $ C == A $ >
  $ D == B $ >
  $ G -> A == B $ >
  $ G -> C == D $;
StepHypRefExpression
1 hyp h1
C == A
2 hyp h2
D == B
3 hyp h
G -> A == B
4 2, 3 syl6eqsr
G -> A == D
5 1, 4 syl5eqs
G -> C == D

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)