theorem eqstr3g (A B C D: set) (G: wff): $ A == C $ > $ B == D $ > $ G -> A == B $ > $ G -> C == D $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | A == C |
|
| 2 | hyp h2 | B == D |
|
| 3 | hyp h | G -> A == B |
|
| 4 | 2, 3 | syl6eqs | G -> A == D |
| 5 | 1, 4 | syl5eqsr | G -> C == D |