Theorem eqstr3g | index | src |

theorem eqstr3g (A B C D: set) (G: wff):
  $ A == C $ >
  $ B == D $ >
  $ G -> A == B $ >
  $ G -> C == D $;
StepHypRefExpression
1 hyp h1
A == C
2 hyp h2
B == D
3 hyp h
G -> A == B
4 2, 3 syl6eqs
G -> A == D
5 1, 4 syl5eqsr
G -> C == D

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)