Theorem syl6eqs | index | src |

theorem syl6eqs (A B C: set) (G: wff):
  $ B == C $ >
  $ G -> A == B $ >
  $ G -> A == C $;
StepHypRefExpression
1 hyp h2
G -> A == B
2 hyp h1
B == C
3 2 a1i
G -> B == C
4 1, 3 eqstrd
G -> A == C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)