Theorem syl5eqsr | index | src |

theorem syl5eqsr (A B C: set) (G: wff):
  $ B == A $ >
  $ G -> B == C $ >
  $ G -> A == C $;
StepHypRefExpression
1 hyp h1
B == A
2 1 a1i
G -> B == A
3 hyp h2
G -> B == C
4 2, 3 eqstr3d
G -> A == C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)