theorem trueeqd (_G: wff) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> (true _n1 <-> true _n2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _nh | _G -> _n1 = _n2 |
|
2 | eqidd | _G -> 0 = 0 |
|
3 | 1, 2 | neeqd | _G -> (_n1 != 0 <-> _n2 != 0) |
4 | 3 | conv true | _G -> (true _n1 <-> true _n2) |