theorem neeqd (_G: wff) (_a1 _a2 _b1 _b2: nat): $ _G -> _a1 = _a2 $ > $ _G -> _b1 = _b2 $ > $ _G -> (_a1 != _b1 <-> _a2 != _b2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _ah | _G -> _a1 = _a2 |
|
2 | hyp _bh | _G -> _b1 = _b2 |
|
3 | 1, 2 | eqeqd | _G -> (_a1 = _b1 <-> _a2 = _b2) |
4 | 3 | noteqd | _G -> (~_a1 = _b1 <-> ~_a2 = _b2) |
5 | 4 | conv ne | _G -> (_a1 != _b1 <-> _a2 != _b2) |