Theorem
anwr
≪
|
index
|
src
|
≫
theorem anwr (a b c: wff): $ b -> c $ > $ a /\ b -> c $;
Step
Hyp
Ref
Expression
1
hyp h
b -> c
2
anr
a /\ b -> b
3
1
,
2
syl
a /\ b -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)