theorem submin (a b: nat): $ a - min a b = a - b $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(a <= b -> a - min a b = a - b) -> (b <= a -> a - min a b = a - b) -> a <= b \/ b <= a -> a - min a b = a - b |
2 |
|
eqmin1 |
a <= b -> min a b = a |
3 |
2 |
subeq2d |
a <= b -> a - min a b = a - a |
4 |
|
subid |
a - a = 0 |
5 |
|
bi1 |
(a <= b <-> a - b = 0) -> a <= b -> a - b = 0 |
6 |
|
lesubeq0 |
a <= b <-> a - b = 0 |
7 |
5, 6 |
ax_mp |
a <= b -> a - b = 0 |
8 |
4, 7 |
syl6eqr |
a <= b -> a - b = a - a |
9 |
3, 8 |
eqtr4d |
a <= b -> a - min a b = a - b |
10 |
1, 9 |
ax_mp |
(b <= a -> a - min a b = a - b) -> a <= b \/ b <= a -> a - min a b = a - b |
11 |
|
eqmin2 |
b <= a -> min a b = b |
12 |
11 |
subeq2d |
b <= a -> a - min a b = a - b |
13 |
10, 12 |
ax_mp |
a <= b \/ b <= a -> a - min a b = a - b |
14 |
|
leorle |
a <= b \/ b <= a |
15 |
13, 14 |
ax_mp |
a - min a b = a - b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)