Theorem eqmin2 | index | src |

theorem eqmin2 (a b: nat): $ b <= a -> min a b = b $;
StepHypRefExpression
1 mincom
min a b = min b a
2 eqmin1
b <= a -> min b a = b
3 1, 2 syl5eq
b <= a -> min a b = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)