Theorem maxcom | index | src |

theorem maxcom (a b: nat): $ max a b = max b a $;
StepHypRefExpression
1 ifpos
a < b -> if (a < b) b a = b
2 1 conv max
a < b -> max a b = b
3 ifneg
~b < a -> if (b < a) a b = b
4 3 conv max
~b < a -> max b a = b
5 ltnlt
a < b -> ~b < a
6 4, 5 syl
a < b -> max b a = b
7 2, 6 eqtr4d
a < b -> max a b = max b a
8 ifneg
~a < b -> if (a < b) b a = a
9 8 conv max
~a < b -> max a b = a
10 lenlt
b <= a <-> ~a < b
11 eqmax2
b <= a -> max b a = a
12 10, 11 sylbir
~a < b -> max b a = a
13 9, 12 eqtr4d
~a < b -> max a b = max b a
14 7, 13 cases
max a b = max b a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)