Theorem eqmax2 | index | src |

theorem eqmax2 (a b: nat): $ a <= b -> max a b = b $;
StepHypRefExpression
1 leloe
a <= b <-> a < b \/ a = b
2 eor
(a < b -> max a b = b) -> (a = b -> max a b = b) -> a < b \/ a = b -> max a b = b
3 ifpos
a < b -> if (a < b) b a = b
4 3 conv max
a < b -> max a b = b
5 2, 4 ax_mp
(a = b -> max a b = b) -> a < b \/ a = b -> max a b = b
6 ifid
if (a < b) b b = b
7 id
a = b -> a = b
8 7 ifeq3d
a = b -> if (a < b) b a = if (a < b) b b
9 8 conv max
a = b -> max a b = if (a < b) b b
10 6, 9 syl6eq
a = b -> max a b = b
11 5, 10 ax_mp
a < b \/ a = b -> max a b = b
12 1, 11 sylbi
a <= b -> max a b = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)