theorem leloe (a b: nat): $ a <= b <-> a < b \/ a = b $;
Step | Hyp | Ref | Expression |
1 |
|
add0 |
a + 0 = a |
2 |
|
addeq2 |
x = 0 -> a + x = a + 0 |
3 |
2 |
anwr |
a + x = b /\ x = 0 -> a + x = a + 0 |
4 |
|
anl |
a + x = b /\ x = 0 -> a + x = b |
5 |
3, 4 |
eqtr3d |
a + x = b /\ x = 0 -> a + 0 = b |
6 |
1, 5 |
syl5eqr |
a + x = b /\ x = 0 -> a = b |
7 |
6 |
orrd |
a + x = b /\ x = 0 -> a < b \/ a = b |
8 |
7 |
exp |
a + x = b -> x = 0 -> a < b \/ a = b |
9 |
|
exsuc |
x != 0 <-> E. y x = suc y |
10 |
9 |
conv ne |
~x = 0 <-> E. y x = suc y |
11 |
|
leaddid1 |
suc a <= suc a + y |
12 |
|
addSass |
suc a + y = a + suc y |
13 |
|
addeq2 |
x = suc y -> a + x = a + suc y |
14 |
13 |
anwr |
a + x = b /\ x = suc y -> a + x = a + suc y |
15 |
|
anl |
a + x = b /\ x = suc y -> a + x = b |
16 |
14, 15 |
eqtr3d |
a + x = b /\ x = suc y -> a + suc y = b |
17 |
12, 16 |
syl5eq |
a + x = b /\ x = suc y -> suc a + y = b |
18 |
17 |
leeq2d |
a + x = b /\ x = suc y -> (suc a <= suc a + y <-> suc a <= b) |
19 |
18 |
conv lt |
a + x = b /\ x = suc y -> (suc a <= suc a + y <-> a < b) |
20 |
11, 19 |
mpbii |
a + x = b /\ x = suc y -> a < b |
21 |
20 |
orld |
a + x = b /\ x = suc y -> a < b \/ a = b |
22 |
21 |
eexda |
a + x = b -> E. y x = suc y -> a < b \/ a = b |
23 |
10, 22 |
syl5bi |
a + x = b -> ~x = 0 -> a < b \/ a = b |
24 |
8, 23 |
casesd |
a + x = b -> a < b \/ a = b |
25 |
24 |
eex |
E. x a + x = b -> a < b \/ a = b |
26 |
25 |
conv le |
a <= b -> a < b \/ a = b |
27 |
|
eor |
(a < b -> a <= b) -> (a = b -> a <= b) -> a < b \/ a = b -> a <= b |
28 |
|
ltle |
a < b -> a <= b |
29 |
27, 28 |
ax_mp |
(a = b -> a <= b) -> a < b \/ a = b -> a <= b |
30 |
|
eqle |
a = b -> a <= b |
31 |
29, 30 |
ax_mp |
a < b \/ a = b -> a <= b |
32 |
26, 31 |
ibii |
a <= b <-> a < b \/ a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)