Theorem
orrd
≪
|
index
|
src
|
≫
theorem orrd (a b c: wff): $ a -> c $ > $ a -> b \/ c $;
Step
Hyp
Ref
Expression
1
orr
c -> b \/ c
2
hyp h
a -> c
3
1
,
2
syl
a -> b \/ c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_mp
)