Theorem
orld
≪
|
index
|
src
|
≫
theorem orld (a b c: wff): $ a -> b $ > $ a -> b \/ c $;
Step
Hyp
Ref
Expression
1
orl
b -> b \/ c
2
hyp h
a -> b
3
1
,
2
syl
a -> b \/ c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)