Theorem
orr
≪
|
index
|
src
|
≫
theorem orr (a b: wff): $ b -> a \/ b $;
Step
Hyp
Ref
Expression
1
ax_1
b -> ~a -> b
2
1
conv
or
b -> a \/ b
Axiom use
axs_prop_calc
(
ax_1
)