Theorem ltlene | index | src |

theorem ltlene (a b: nat): $ a < b <-> a <= b /\ a != b $;
StepHypRefExpression
1 ltle
a < b -> a <= b
2 ltne
a < b -> a != b
3 1, 2 iand
a < b -> a <= b /\ a != b
4 bi1
(a <= b <-> ~a < b -> a = b) -> a <= b -> ~a < b -> a = b
5 leloe
a <= b <-> a < b \/ a = b
6 5 conv or
a <= b <-> ~a < b -> a = b
7 4, 6 ax_mp
a <= b -> ~a < b -> a = b
8 7 con1d
a <= b -> ~a = b -> a < b
9 8 conv ne
a <= b -> a != b -> a < b
10 9 imp
a <= b /\ a != b -> a < b
11 3, 10 ibii
a < b <-> a <= b /\ a != b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)