theorem ltlenle (a b: nat): $ a < b <-> a <= b /\ ~b <= a $;
Step | Hyp | Ref | Expression |
1 |
|
ltle |
a < b -> a <= b |
2 |
|
ltirr |
~a < a |
3 |
2 |
a1i |
a < b -> ~a < a |
4 |
|
ltletr |
a < b -> b <= a -> a < a |
5 |
3, 4 |
mtd |
a < b -> ~b <= a |
6 |
1, 5 |
iand |
a < b -> a <= b /\ ~b <= a |
7 |
|
ltlene |
a < b <-> a <= b /\ a != b |
8 |
|
anl |
a <= b /\ ~b <= a -> a <= b |
9 |
|
con3 |
(a = b -> b <= a) -> ~b <= a -> ~a = b |
10 |
9 |
conv ne |
(a = b -> b <= a) -> ~b <= a -> a != b |
11 |
|
eqler |
a = b -> b <= a |
12 |
10, 11 |
ax_mp |
~b <= a -> a != b |
13 |
12 |
anwr |
a <= b /\ ~b <= a -> a != b |
14 |
8, 13 |
iand |
a <= b /\ ~b <= a -> a <= b /\ a != b |
15 |
7, 14 |
sylibr |
a <= b /\ ~b <= a -> a < b |
16 |
6, 15 |
ibii |
a < b <-> a <= b /\ ~b <= a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)