Theorem ltlenle | index | src |

theorem ltlenle (a b: nat): $ a < b <-> a <= b /\ ~b <= a $;
StepHypRefExpression
1 ltle
a < b -> a <= b
2 ltirr
~a < a
3 2 a1i
a < b -> ~a < a
4 ltletr
a < b -> b <= a -> a < a
5 3, 4 mtd
a < b -> ~b <= a
6 1, 5 iand
a < b -> a <= b /\ ~b <= a
7 ltlene
a < b <-> a <= b /\ a != b
8 anl
a <= b /\ ~b <= a -> a <= b
9 con3
(a = b -> b <= a) -> ~b <= a -> ~a = b
10 9 conv ne
(a = b -> b <= a) -> ~b <= a -> a != b
11 eqler
a = b -> b <= a
12 10, 11 ax_mp
~b <= a -> a != b
13 12 anwr
a <= b /\ ~b <= a -> a != b
14 8, 13 iand
a <= b /\ ~b <= a -> a <= b /\ a != b
15 7, 14 sylibr
a <= b /\ ~b <= a -> a < b
16 6, 15 ibii
a < b <-> a <= b /\ ~b <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)