Step | Hyp | Ref | Expression |
1 |
|
lteq2 |
x = b -> (a < x <-> a < b) |
2 |
|
leeq1 |
x = b -> (x <= a <-> b <= a) |
3 |
1, 2 |
oreqd |
x = b -> (a < x \/ x <= a <-> a < b \/ b <= a) |
4 |
|
lteq2 |
x = 0 -> (a < x <-> a < 0) |
5 |
|
leeq1 |
x = 0 -> (x <= a <-> 0 <= a) |
6 |
4, 5 |
oreqd |
x = 0 -> (a < x \/ x <= a <-> a < 0 \/ 0 <= a) |
7 |
|
lteq2 |
x = y -> (a < x <-> a < y) |
8 |
|
leeq1 |
x = y -> (x <= a <-> y <= a) |
9 |
7, 8 |
oreqd |
x = y -> (a < x \/ x <= a <-> a < y \/ y <= a) |
10 |
|
lteq2 |
x = suc y -> (a < x <-> a < suc y) |
11 |
|
leeq1 |
x = suc y -> (x <= a <-> suc y <= a) |
12 |
10, 11 |
oreqd |
x = suc y -> (a < x \/ x <= a <-> a < suc y \/ suc y <= a) |
13 |
|
orr |
0 <= a -> a < 0 \/ 0 <= a |
14 |
|
le01 |
0 <= a |
15 |
13, 14 |
ax_mp |
a < 0 \/ 0 <= a |
16 |
|
eor |
(a < y -> a < suc y \/ suc y <= a) -> (y <= a -> a < suc y \/ suc y <= a) -> a < y \/ y <= a -> a < suc y \/ suc y <= a |
17 |
|
ltsucid |
y < suc y |
18 |
|
lttr |
a < y -> y < suc y -> a < suc y |
19 |
17, 18 |
mpi |
a < y -> a < suc y |
20 |
19 |
orld |
a < y -> a < suc y \/ suc y <= a |
21 |
16, 20 |
ax_mp |
(y <= a -> a < suc y \/ suc y <= a) -> a < y \/ y <= a -> a < suc y \/ suc y <= a |
22 |
|
con3 |
(a <= y -> a < suc y) -> ~a < suc y -> ~a <= y |
23 |
|
bi1 |
(a <= y <-> a < suc y) -> a <= y -> a < suc y |
24 |
|
lesuc |
a <= y <-> suc a <= suc y |
25 |
24 |
conv lt |
a <= y <-> a < suc y |
26 |
23, 25 |
ax_mp |
a <= y -> a < suc y |
27 |
22, 26 |
ax_mp |
~a < suc y -> ~a <= y |
28 |
|
bi2 |
(suc y <= a <-> y <= a /\ ~a <= y) -> y <= a /\ ~a <= y -> suc y <= a |
29 |
|
ltlenle |
y < a <-> y <= a /\ ~a <= y |
30 |
29 |
conv lt |
suc y <= a <-> y <= a /\ ~a <= y |
31 |
28, 30 |
ax_mp |
y <= a /\ ~a <= y -> suc y <= a |
32 |
31 |
exp |
y <= a -> ~a <= y -> suc y <= a |
33 |
27, 32 |
syl5 |
y <= a -> ~a < suc y -> suc y <= a |
34 |
33 |
conv or |
y <= a -> a < suc y \/ suc y <= a |
35 |
21, 34 |
ax_mp |
a < y \/ y <= a -> a < suc y \/ suc y <= a |
36 |
3, 6, 9, 12, 15, 35 |
ind |
a < b \/ b <= a |