Theorem oreqd | index | src |

theorem oreqd (_G _a1 _a2 _b1 _b2: wff):
  $ _G -> (_a1 <-> _a2) $ >
  $ _G -> (_b1 <-> _b2) $ >
  $ _G -> (_a1 \/ _b1 <-> _a2 \/ _b2) $;
StepHypRefExpression
1 hyp _ah
_G -> (_a1 <-> _a2)
2 1 noteqd
_G -> (~_a1 <-> ~_a2)
3 hyp _bh
_G -> (_b1 <-> _b2)
4 2, 3 imeqd
_G -> (~_a1 -> _b1 <-> ~_a2 -> _b2)
5 4 conv or
_G -> (_a1 \/ _b1 <-> _a2 \/ _b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)