theorem oreq (_a1 _a2 _b1 _b2: wff): $ (_a1 <-> _a2) -> (_b1 <-> _b2) -> (_a1 \/ _b1 <-> _a2 \/ _b2) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anl | (_a1 <-> _a2) /\ (_b1 <-> _b2) -> (_a1 <-> _a2) |
|
| 2 | anr | (_a1 <-> _a2) /\ (_b1 <-> _b2) -> (_b1 <-> _b2) |
|
| 3 | 1, 2 | oreqd | (_a1 <-> _a2) /\ (_b1 <-> _b2) -> (_a1 \/ _b1 <-> _a2 \/ _b2) |
| 4 | 3 | exp | (_a1 <-> _a2) -> (_b1 <-> _b2) -> (_a1 \/ _b1 <-> _a2 \/ _b2) |