Theorem oreq1d | index | src |

theorem oreq1d (_G _a1 _a2 b: wff):
  $ _G -> (_a1 <-> _a2) $ >
  $ _G -> (_a1 \/ b <-> _a2 \/ b) $;
StepHypRefExpression
1 hyp _h
_G -> (_a1 <-> _a2)
2 biidd
_G -> (b <-> b)
3 1, 2 oreqd
_G -> (_a1 \/ b <-> _a2 \/ b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)