Theorem le01 | index | src |

theorem le01 (a: nat): $ 0 <= a $;
StepHypRefExpression
1 leeq2
a + 0 = a -> (0 <= a + 0 <-> 0 <= a)
2 add0
a + 0 = a
3 1, 2 ax_mp
0 <= a + 0 <-> 0 <= a
4 leaddid2
0 <= a + 0
5 3, 4 mpbi
0 <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)