theorem leadd1 (a b c: nat): $ a <= b <-> a + c <= b + c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a <= b <-> E. x a + x = b) -> (E. x a + x = b <-> a + c <= b + c) -> (a <= b <-> a + c <= b + c) |
2 |
|
dfle |
a <= b <-> E. x a + x = b |
3 |
1, 2 |
ax_mp |
(E. x a + x = b <-> a + c <= b + c) -> (a <= b <-> a + c <= b + c) |
4 |
|
bitr3 |
(a + x + c = b + c <-> a + x = b) -> (a + x + c = b + c <-> a + c + x = b + c) -> (a + x = b <-> a + c + x = b + c) |
5 |
|
addcan1 |
a + x + c = b + c <-> a + x = b |
6 |
4, 5 |
ax_mp |
(a + x + c = b + c <-> a + c + x = b + c) -> (a + x = b <-> a + c + x = b + c) |
7 |
|
eqeq1 |
a + x + c = a + c + x -> (a + x + c = b + c <-> a + c + x = b + c) |
8 |
|
addrass |
a + x + c = a + c + x |
9 |
7, 8 |
ax_mp |
a + x + c = b + c <-> a + c + x = b + c |
10 |
6, 9 |
ax_mp |
a + x = b <-> a + c + x = b + c |
11 |
10 |
exeqi |
E. x a + x = b <-> E. x a + c + x = b + c |
12 |
11 |
conv le |
E. x a + x = b <-> a + c <= b + c |
13 |
3, 12 |
ax_mp |
a <= b <-> a + c <= b + c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)